

Transmit / Receive Modules

Dr. Brad Binder Technical Director PEO IWS 2.0 Above Water Sensors Directorate Naval Sea Systems Command

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 MAY 2007		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
UnclassifiedTransmit / Receive ModulesTransmit Modules				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PEO IWS 2.0 Above Water Sensors Directorate Naval Sea Systems Command				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM2021	OTES 71., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	15	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

T/R Module Outline

- Future surface navy radar
- Performance and cost
- Wide bandgap semiconductors
- Summary

Radar System Performance Drivers

- Stealth
- Speed
- Altitude
- Maneuvers
- Countermeasures
- BMD Threats
- SUW
- TASW
- EMI / EMC

Above Water Sensor Overview

ONR, MDA, Int'l Cooperative Technology Efforts

Navy History in Shipboard Phased Arrays

• 60+ year track record of ship and phased array radar design, engineering, and construction

 Ongoing development of next-generation advanced shipboard phased array radars

 Clear understanding of shipboard power, cooling, and other auxiliary support systems

1983- present:

27 Aegis Cruisers; 44+ Destroyers

1939: Battleship Gunfire Control Radar

T/R Module Issues

- Technology supports most requirements
 - LV GaAs output power limitations
 - Can address by multiple HPAs per T/R module; Drives cost
 - HV GaAs satisfies most requirements
 - Wideband gap materials offer highest power potential
 - Thermal management and cost challenges
- LV GaAs in fielded systems
- HV GaAs in engineering development systems
- WBG devices in research and technology development
- High T/R module cost for long range RADAR applications
 - Large quantities of modules needed

Cost, not performance, is most challenging issue for future surface Navy applications

7

X-band T/R Module Cost Breakdown

- Three major X-band T/R module cost elements
 - GaAs MMICs, packaging, and assembly
- Reduction in all areas for significant price cut
 - GaAs cost significantly varies among suppliers

MMICs are highest cost item and have greatest variation

MMIC Cost

- MMIC \$ = (Processed wafer \$) / (# of "good" MMICs/wafer)
 - Processed wafer cost drivers are labor and capital
 - # of good MMICs determined by wafer diameter, MMIC size, and yield

Top view of wafer showing MMICs and defective parts

Wafer Processing Cost

- Capital and overhead costs vary widely among foundries
 - Foundry utilization = (Good wafers)/(Capacity)
 - Low foundry utilization increases cost by > 300%
- Volume often insufficient for low capital/overhead cost
 - GaAs foundry capacity = 10,000 50,000 4" wafers/yr
 - 100,000 10 W modules use ≈ 2,000 4" or 1,000 6" wafers
- High volume products using similar processes, not identical parts, necessary for low cost

Significant wafer volume necessary for low MMIC cost; MMIC volume driven by wireless applications

Wafer Diameter

- Larger diameter has more parts for similar wafer cost
- GaAs currently on 3" or 4", some transition to 6"
- 6" processing requires large capital investment
 - High volume necessary to offset capital cost
 - Technical issues; Breakage and uniformity

Transition to 6" wafers driven by volume, not cost

Size/Complexity and Defects

Lower Power MMIC

- Smaller die less expensive/higher yield; Complexity drives yield
- High process yield enables higher power and higher integration
 - Current commercial devices will not drive improvements

High complexity control and PA MMICs stress yields and drive cost

T/R Module Assembly

- Wire bond and pick and place assembly is highly automated
 - High assembly yields (> 90%) can be achieved
 - Total direct labor time can be < 1 hour per module
 - Bond wire reliability not an issue; Missed, rather than weak, wire bonds made by robotics
- Flip-chip and ball-grid arrays can reduce assembly time
 - Introduces CTE-based reliability and design issues; Issue is more severe as integration/size increases
 - Batch (parallel) rather than serial assembly process
 - Eliminates cost of backside processing, but adds additional cost of wafer bumping

Bondwire-based assembly can be reliable and low cost

T/R Module Packaging

- Packaging satisfies performance
 - Low loss only critical after PA and before LNA
 - Thermal management can be an issue for high power MMIC applications
- Cost reduction is remaining issue
 - Thick-film, rather than thin-film, on low cost substrate
- Different requirements within a module; No traditional T/Rs
 - PA and LNA needs high performance, low I/O;
 Single layer, gold ink, thick-film substrate
 - Control MMICs needs low performance, high I/O;
 Multiple layer, thick-film conductor

Movement to lower cost, lower performance substrates and modified packaging architectures

Unclassified 13

Cost Determines Technology Choice

Equivalent Performance Tracking Radars

- Higher power module lowers number of T/R modules and area
 - Requires more MMIC power, prime power, and cooling
- For many high power applications cost will drive technology choice

Unclassified 14

Future Trends for Phased Arrays

- Use of foundries with high loading
- Move to larger wafers driven by other applications
- Development to improve yields
 - Power amplifier and control MMIC complexity lowers yield compared to simpler components
 - Significant cost reduction potential (> 2X)
 - Enables lower cost packaging/assembly by enabling higher level of integration
- Semiconductor cost reduction through improved processes
 - Also enables higher integration to reduce packaging and assembly costs
- Utilize lower cost, lower performance packaging materials
- Cost and power are stressing future requirements
- Wide bandgap to address output power/cost issues
 - Metrics other than power density necessary to evaluate progress
 - Material quality key to scaling proof-of-concept devices to higher powers with same power density

Unclassified 15